Line Graph	Shows continuous changes over time	Bar Chart	Compares quantities or frequencies in different categories
Data to Use	Continuous: e.g. stream flow, traffic flow, population change on the Y axis and equally spaced time on the X axis	Data to Use	Categorical (discrete): e.g. types of vegetation of transport people use to get to school. X axis is categories and Y axis is the frequency
Visual Example		Visual Example	
Pictogram	Use a pictorial symbol or icon instead of a bar (all of the icons must be the same size)	Pie Chart	Shows the proportions of a total amount
Data to Use	Categorical (discrete): e.g. the amount of oil consumption over different countries	Data to Use	Categorical (discrete): 4 to 8 categories of data. The data needs to be in \% out of 100 before it can be plotted
Visual Example		Visual Example	
Histogram	Uses bars but with no gaps between them	Divided Bar Chart	Compares quantities or frequencies in different categories where the bars are subdivided to show multiple data
Data to Use	Continuous data: e.g. daily rainfall values over a period of a month with the amount on the X axis (equal class intervals are used) and frequency on the Y axis.	Data to Use	Categorical (discrete): e.g. 5 sites of a river with each bar showing the 15 pieces of bedload but in the angularity categories
Visual Example		Visual Example	

Scatter Graph	If two sets of numerical data are thought to be related they are plotted on a scatter graph	Population Pyramid	Compares male and female populations for a country
Data to Use	Continuous: e.g. GNP and average car ownership. The independent variable goes on the X axis (variable that is causing the change) and the dependent variable on the Y axis	Data to Use	Continuous data on the X axis (population represented in millions) and age on the Y axis (categorical). The proportions are represented as bars (males on the left, females on the right)
Visual Example		Visual Example	
Choropleth Map	Use different colours or densities of the same colour to show the distribution of data	Isoline Map	Uses lines of equal value to show patterns (see maps for contours)
Data to Use	The base map shows regions or areas Data is divided into groups or categories The intervals are equal and do not overlap The darker the shading the higher the values \rightarrow easier to interpret and spot patterns Often misleading as colours change abruptly at boundaries \rightarrow this may not be the case in the area e.g. more blurred boundaries / lines	Data to Use	Isoline maps can be used to represent data points over an area They are plotted onto a map and the lines join up areas of equal value They can be misleading if the lines are drawn onto a map with few data points \rightarrow the more data points \rightarrow the more representative Some subjectivity in plotting the data lines
Plotting Data	1. Decide on the category that the data fits 2. Shade the area the correct colour of the category	Plotting Data	1. Mark the observed data onto the base map 2. Consider the intervals of the lines 3. The lines pass between values that are higher on one side and lower on the other
Visual Example		Visual Example	
Dot Maps	Used to represent a particular value or number and are located accurately on a map	Proportional Symbols	Show data on a base map where spatial variations can be seen
Data to Use	1 dot represents 1 value. E,g. one dot could represent 100,000 people in an area or an area that has experiences 5 or more earthquakes in 50 years.	Data to Use	The data represented is one category e.g. the total number of rollercoasters per US state or number of angular pieces of bedload at 5 river sampling sites
Plotting Data	1. Locate the area to draw the dot 2. Use the key to add the correct sized dot on the map	Plotting Data	1. The scale will be done for you in the exam 2. Use a compass to draw the correct size circle in the relevant location on the base map
Visual Example		Visual Example	

